

Sept. 19–21, 2022

#vizientsummit

Al and Collaborative Workflows Predict and **Prevent Clinical Deterioration**

Lisa Shieh, MD PhD **Associate Chief Quality Officer**

Margaret Smith, MBA Director of Operations, Stanford Healthcare Al Applied Research Team

Jerri Westphal, MSN, RN, RN-BC Manager of Nursing Informatics, EHR Optimization and Reporting

Stanford Health Care, Palo Alto, CA

Disclosure of Financial Relationships

Vizient, Inc., Jointly Accredited for Interprofessional Continuing Education, defines companies to be ineligible as those whose primary business is producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients.

An individual is considered to have a relevant financial relationship if the educational content an individual can control is related to the business lines or products of the ineligible company.

No one in a position to control the content of this educational activity have relevant financial relationships with ineligible companies.

Learning Objectives

- Discuss how machine learning can drive workflows in hospital settings.
- Apply design principles for electronic health record applications and multidisciplinary workflows to enable key drivers for an improvement project.
- Describe a collaborative approach leveraging artificial intelligence to improve patient outcomes and safety culture.

Al and Collaborative Workflows Predict and **Prevent Clinical Deterioration**

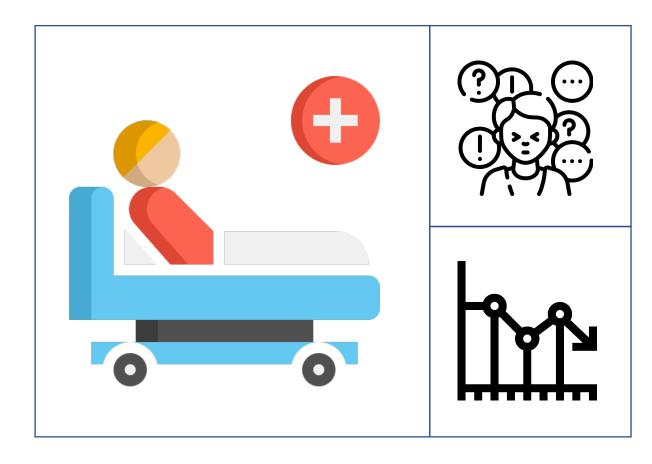
Lisa Shieh, MD, PhD **Associate Chief Quality Officer**

Margaret Smith, MBA Director of Operations, Stanford Healthcare Al Applied Research Team

Jerri Westphal, MSN, RN, RN-BC Manager of Nursing Informatics, EHR Optimization and Reporting

Stanford Health Care, Palo Alto, CA

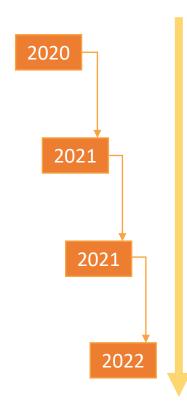
The Problem



- The inpatient care setting is a busy and stressful place
- Patients are cared for by many different clinicians and hundreds of data points are captured every day by devices and care team members
- Often, things are so busy that signs of future clinical deterioration are missed
- As a result, unexpected clinical deterioration occurs - rapid response team activations (RRT), ICU escalations, codes, or death

images: Flaticon.com

Timeline



- January 2020, a multidisciplinary taskforce and project team was assembled to learn more about this problem
- November 2020, complete the initial design of an Al-enabled workflow
- January 2021, launched an initial pilot of the Al-enabled workflow on a General Medicine unit. Pilot continued through the pandemic
- May 2021, pilot expanded to a second General Medicine unit
- October 2021, pilot expanded to a third and fourth General Medicine unit
- November 2021, pilot expanded to a General Surgery unit
- March 2022, pilot results across all units presented to leadership
- June 2022, Al-enabled workflow went live across all non-ICU inpatient units

The Team

Representatives from all stakeholder groups in the current work system:

- Bedside Nurses
- Rapid Response Team Nurses
- Attendings
- Residents
- Medical Informatics
- Data Science
- EHR Optimization
- Quality Improvement
- Research

- Secured sponsorship across verticals
- Ensured data science and informatics involvement from the start
- Multidisciplinary to ensure entire process represented

images: Flaticon.com

Current State Analysis – Key Findings

- 1. Signs of future deterioration not recognized
 - Why? Data overload and lack of continuity
 - Why? Only able to take into account a subset of the data available and limited ability to see connections that may be precursors to deterioration

- 2. Sign recognized, but not acted on
 - Why? Subjective detection methods leading to disagreement among team members
 - Why? No agreed upon process
 - Why? Lack of shared mental model for clinical deterioration

- Leverage QI tools such as process mapping and root cause analysis
- Conducted semistructured interviews to gather pain points and understand the human element

images: Flaticon.com

Key Drivers

The conditions that need to be true in order to solve the problem (derived from root cause analysis) **Objective** clinical assessment and shared mental model for risk of acute deterioration

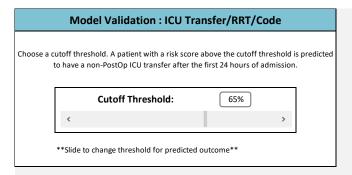
Clinical deterioration **detected early** to allow time for
intervention

Clearly defined and agreed upon workflows for initial response and follow-up

Role clarity throughout the process

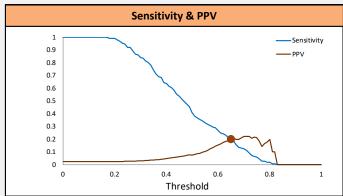
- Translated root causes into key drivers for success to bridge to intervention design
- Identified AI prediction task articulated in key drivers
- Al is only a fraction of the solution

Model Validation



Confusion Matrix			
Predicted Outcome False True	• 31	• 124	
	• 121	5956	
	True Actual C	False Outcome	

Performance Measures			
True Positive Rate (Sensitivity): Of the patients with an adverse/mortality event, this is the percentage with scores above the threshold. Higher is better.	20.4%		
False Positive Rate (1-Specificity): Of the patients without an adverse/mortality event, this is the percentage with scores above the threshold. Lower is better.	2.0%		
Positive Predictive Value: Of the patients with scores above the threshold, this is the percentage who went on to have an adverse/mortality event. Higher is better.	20.0%		
Negative Predictive Value: Of the patients with scores below the threshold, this percentage did not have an adverse/mortality event. Higher is better.			



Optimal sensitivity and positive predictive value (PPV) at a score of 65

When a patient reaches a score >=65, there is a +20% chance of an "event" in 6-18 hours

Event = ICU escalation, RRT or Code

- Model validation on the local patient population was paramount (performance change significantly)
- Model validation approach was informed by key drivers & user defined workflow requirements

PPV = Positive Predictive Value

Al-enabled Workflow

Step 1

Risk of Clinical Deterioration Column Flag and BPA when patient breeches model threshold (>20% chance of deterioration in 6-18 hours)

Step 2

Mobile Alert* to RN assigned to patient in EHR, Primary Resident/Intern, Cross Cover Resident/Intern

Provider Team Mobile Alert

Nursing Mobile Alert

*Mobile alert only occurs the first time the patient is flagged by the model every 24 hours.

- Conducted future state process mapping sessions using design thinking methods and human factors to stimulate creativity
- Engaged front-line staff in qualitative model validation to build buy-in and familiarize end users with Al
- Iterated many times on workflow design before and after implementation
- Ensured risk review as well as nursing practice

Workflow Design

Step

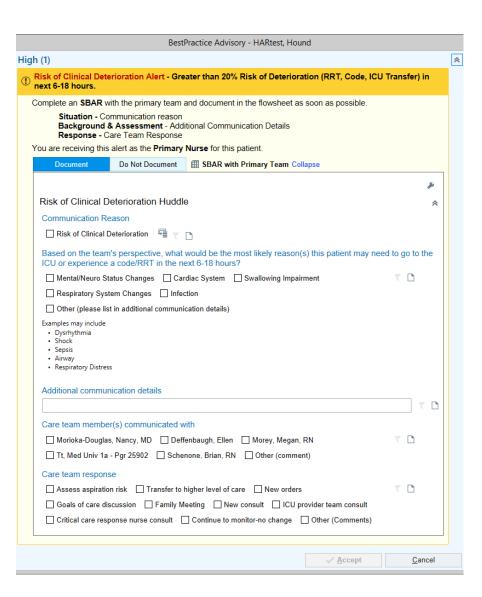
Primary Nurse and Charge Nurse connect to assess the patient and **validate alert**

Step

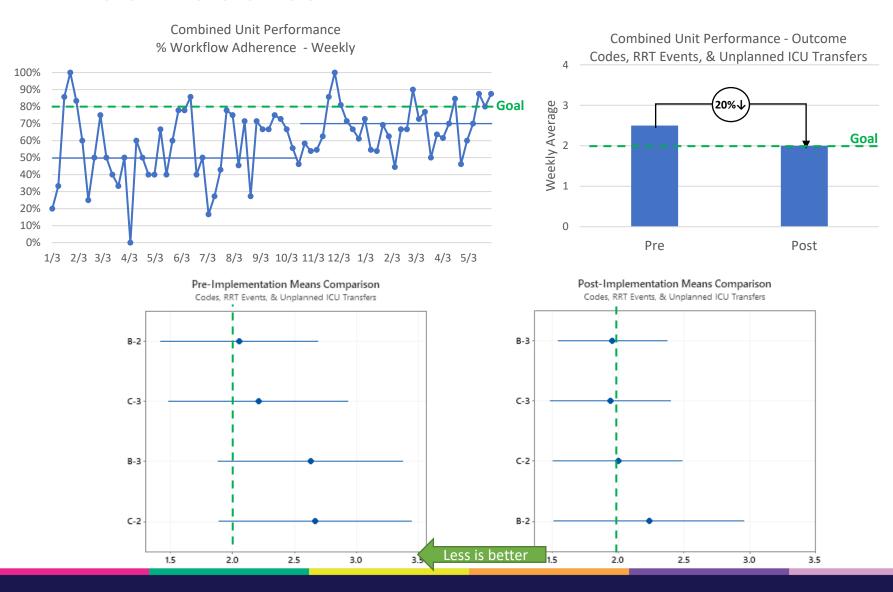
Primary Nurse and Provider Team connect for SBAR Clinical Deterioration Huddle in person or on the phone within 2 hours

SBAR Clinical Deterioration Huddle:

- **S**: Patient at *high* risk of clinical deterioration
- B/A: Discuss nursing concerns and likely reason(s) for clinical deterioration
- R: Discuss response to risk of clinical deterioration
 - Assess aspiration risk
 - Transfer to higher level of care
 - New orders
 - Goals of care discussion
 - Family meeting
 - New consult
 - ICU provider team consult
 - Critical care response nurse consult
 - Continue to monitor no change
 - Other (Comments)



Pilot Results



- Trending at 70%
 workflow
 adherence;
 ongoing efforts to increase to 80%
- Met our outcome goal of a 20% reduction in clinical deterioration events

Pilot Results – Provider Feedback

In a survey of nursing staff (52 nurses, 30 responded; 57%):

- 96.5% reported that they felt the workflow was adding value to patient care
- 89.6% indicated that the tool changes the way they care for their patients:
 - Charge nurses in the survey reported alternating patient assignments or ratios in anticipation of clinical changes with the flagging patient, and bedside nurses reported they rounded more frequently and/or completed a more in-depth patient assessment on their patients who were flagging

In a survey among 19 medicine residents participating in the pilot:

- 50% indicated that they take action on the alerts by calling the bedside nurse to huddle, messaging the bedside nurse, or going to the bedside to huddle with the nurse
- 50% indicated that no personal action is taken on the alert; however, 64% said that after receiving an alert, the bedside nurse also reached out to them to discuss the patient's status
- When asked about challenges to workflow adherence, 30% of physicians indicated that when they
 received the alert, they had recently assessed the patient, and, therefore, further action seemed
 redundant

Lessons Learned

- Collaborative team relationships are paramount
- Empowering bedside nurse's and primary provider teams
- Managing frequency of alerts is key
- Alert delivery mechanism lock out periods
- Action clearly defined check-list structured huddle
- Keep an eye out for unanticipated use and misuse
- Building trust in the tool early on
- Cautionary tale > the AI tool does not replace clinical judgement

Key Takeaways

- Artificial intelligence (AI) is not the end product, but rather an enabling function in the form of machine-learning (ML) generated predictions that power a broader set of digital applications, workflows, and human teams (i.e., an AI-enabled system)
- The Al-enabled system must be designed and implemented in a manner that is user centered and driven by pragmatic needs and challenges
- Empowering nurses and other front-line providers with AI tools enhances collaboration and a culture of safety

Questions?

Contacts:

Lisa Shieh, <u>LShieh@stanford.edu</u>
Margaret Smith, <u>Marsmith@stanford.edu</u>
Jerri Westphal, <u>JWestphal@stanfordhealthcare.org</u>

HEART

Stanford Healthcare Al Applied Research Team